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The short-distance behavior of the measure of a sphere and of the correlation 
integral is determined, in the case of disconnected repellers, by scaling laws 
whose corrections are oscillating functions, periodic or aperiodic, depending on 
exact or approximate self-similarity of the measure. The Mellin transforms 
prove to be the correct analytic tool in order to investigate these corrections to 
scaling. It has been previously proved that they are meromorphic for linear 
Cantor sets and that the leading pole gives the correlation dimension in agree- 
ment with the results of the thermodynamic formalism. Here we show that the 
residues of these poles can also be computed to any desired accuracy with 
simple algorithms and that the knowledge of the singularity spectrum of the 
Mellin transforms provides the Fourier spectrum of the scaling correction for 
the self-similar measure and that it reproduces the damped oscillations in the 
generic case. The method applies to the nonlinear repellers such as the discon- 
nected Julia sets by using an approximation theorem. 

KEY WORDS: Mixing repellers; Mellin transform; potential and energy 
integrals; corrections to scaling laws; singularity spectrum and residues. 

1. I N T R O D U C T I O N  

St r ange  a t t r a c t o r s  (1'2) a n d  repel lers  (3) p l ay  a c ruc ia l  role  in n o n l i n e a r  

d y n a m i c s  in the  n e w  a p p r o a c h  to t u r b u l e n c e  based  on  the  exc i t a t i on  of  a 

few n o n l i n e a r  m o d e s  r a t h e r  t h a n  inf ini te ly  m a n y  l inear  modes .  (4'5) A large  

n u m b e r  of  sys tems  w h o s e  a t t r a c t o r s  a re  the  t e n s o r  p r o d u c t  of  C a n t o r  sets 

a n d  s m o o t h  m a n i f o l d s  a n d  w h o s e  d y n a m i c s  h a v e  a h y p e r b o l i c  c h a r a c t e r  

h a v e  been  inves t iga ted .  F r o m  a m a t h e m a t i c a l  p o i n t  of  v iew the  repel lers  a re  
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simpler; they arise as basin boundaries of attracting fixed points and are 
attractors for the inverse map. 

We shall restrict our analysis to the mixing repellers (6) on the real line, 
which are Cantor sets endowed with an ergodic measure invariant with 
respect to an expanding map. The Julia sets (7) are the most important 
nonlinear repellers; the linear Cantors are the simplest repellers and the 
building blocks to describe the Julia sets themselves. The natural setting 
in which to describe these systems is provided by the thermodynamical 
formalism.(8 10) In the case of linear Cantor sets explict results are obtained 
for the Gibbs measures(H'12~; the convergence to the thermodynamic 
functions of Julia sets of sequences computed from linear Cantors has also 
been proved. (13'14) 

The local behavior of the measure and the short-distance behavior of 
the correlation integrals of the measure are not described by the ther- 
modynamic limit, except for the leading scaling behavior. The corrections 
to the scaling laws were first numerically investigated ~15) and qualitatively 
explained with a scaling argument for self-similar repellers/~6) The first 
analytical treatment was based on the energy integral given by Mellin 
transform of the correlation (~v'18) following a procedure which was success- 
ful in analyzing the measures of the Julia sets. (19) The energy integrals were 
shown to be meromorphic for the linear Cantor sets and generalized to 
describe the dimension spectrum. (2~ From the possible patterns of poles 
the possible behaviors of the corrections to the scaling law of the correla- 
tion functions were outlined. (2~) 

In the present work an extension of the method to investigate the 
behavior of the measure of a ball of radius l as l ~  0 is proposed, by 
introducing the potential function (a detailed analysis will be found in 
ref. 21) and an algorithm to compute the residues of the poles for both the 
potential and the energy integrals. 

The residues are obtained from the functional equation satisfied by the 
potential and energy integrals; they are related to integrals on the invariant 
measure which are approximated in two distinct ways by using the order-n 
partitions of the Cantor sets. The convergence as n ~ ~ is proved and in 
one case an explicit error bound is provided and numerically verified. No 
analytical estimates of the decay law of the residues were obtained, and a 
numerical investigation was carried out by comparing them with the log 1 
Fourier spectrum of the correction to the scaling laws for the measure of 
a ball and the correlation integral for self-similar measures. The good 
agreement further proves that the proposed method is accurate and 
reliable, and the evidence of a power-law decrease of the Fourier coef- 
ficients with exponent between 1.2 and 1.4 shows that the corrections to the 
scaling laws are not smooth functions, at least in the periodic case. 
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The behavior of the correlation integrals of non-self-similar measures 
for some linear Cantor and Julia sets was also examined; in this case the 
residue spectrum is the only available tool to analyze the aperiodic 
corrections to the scaling law. 

Numerical difficulties can be found in the search for poles when the 
scales are quite different and perturbation expansions with respect to the 
equal scale solutions do not converge. Similarly, in the case of Julia sets the 
method is fairly accurate when the approximation with linear Cantor sets 
is rapidly convergent, as for the quadratic map F(z)  = z 2 - p  with p ~> 2. 

The plan of the work is the following: in Section 2 we introduce the 
basic notations and definitions and recall some results based on scaling 
arguments. In Section 3 we determine the poles of the potential at the fixed 
points of a linear Cantor set, compute the f (~)  spectrum, and provide the 
basic formulas for the residues with error estimates and convergence 
proofs, and their extensions to the energy integrals. In Section 4 the 
Fourier spectrum of the correction to the scaling law is computed for the 
measure of the ball and the correlation integral in the periodic case and its 
decay law is investigated. The generic case for the correlation integral is 
illustrated by some examples. 

2. POTENTIAL AND ENERGY INTEGRALS FOR 
MIX ING REPELLERS 

We consider a dynamical system (do, T, /0 ,  where doc [0, 1] is the 
maximal invariant set of a map T defined on [0, 1 ], and # is an invariant 
ergodic measure. If T 1([0, 1]) is the union of disconnected sets and T is 
expanding on T - l ( [ 0 ,  1]), we call do a repeller. (6) Letting 

T 1 ( [ 0 , 1 ] ) =  U Aj,  A j n A k =  ~ f o r j C k  (2.1) 
j = l  

the inverse of T on any of the sets Aj is defined and is denoted by T f  1, and 
the following notation will be used: 

T I (A)=  ~) T71(A), A c [ 0 , 1 ]  (2.2) 
j = l  

The set d o is a Cantor set; it is a linear Cantor set if the map T is linear 
on T 1([0, 1]). A measure/~ defined on do is invariant if # (A)=k t (T  1A), 
VA c do, and balanced with weights 

P = ( P l  ..... Ps), pj>/O, pl  q- . . .  + p s = l  (2.3) 
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if for any positive measurable set A 

#( Tj I ( A  )) = pfl~(A) (2.4) 

Equation (2.4) holds if and only if for any measurable function 

s 

We shall denote by (cg, L , / 0  a linear Cantor system and by L/ - ~ ( x )  the 
inverses of the map L, 

L f ' ( x ) = 2 j x + b j ,  j = l  ..... s (2.6) 

and call 0 < 2j < 1 the scales of the map. We introduce the intervals 

~ =  U Ik~,...,K,, Ik,,...,K,=LL~'''L~I([o, 1]) (2.7) 
k l  ,..., kn 

and the partitions 

~ / ~ = J n n ~ =  U Akl,...,k,, 
k l  ,..., kn 

A~l,...,k = Ikl,...,k ~ C~ (2.8) 

Letting /~(n) be a sequence of Stjeltjes measures whose density is 
constant on each Ik,,...,k,, zero elsewhere, the invariant measure turns out 
to be defined by requiring that #(n)(Akl,...,k,)=pk ~.-.pk.. The invariant 
measure on qr is then defined by 

#(Akl,..., k~ = #(n)(Akl,..., k~ = Pk~ " �9 �9 Pk, (2.9) 

Denoting by B(x ,  l) - (x  - l, x + l) the sphere of center x and radius l, we 
introduce its Mellin transform 

V(x;  ~) = l -= d l 4 B ( x ,  l)) = I x - y [  = d p ( y )  (2.10) 

The divergence abscissa of V(x;  ct) determines the scaling exponent of 
#(B(x, l)), while the corrections to the scaling law are determined by the 
remaining singularities. 

We consider as well the correlation integrals defined by 

c(ll=I f  o(l-lx-yl/d ,Ix)d ,(y)=j (2.11) 
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and their Mellin transforms 

r = I ~ dC(l) = V(x; cr d#(x) 

= I~ .f~ Ix-yl-~ d~(x)du(y) (2.12) 

We recall that, according to Young's theorem, (22) if the limit of 
log #(B(x,/))/log I exists on a set g ~ E of full # measure, then the limit is 
constant in d ~ and is equal to the information dimension DI(/~). The 
correlation integral scales with the correlation dimension D2(/~), which is 
the limit of log C(1)/log I as l --* 0. 

Scaling Arguments. We first remark that for a self-similar Cantor, 
where 2j = 2, pj = p = 1Is for 1 ~< j ~< s, the corrections to the scaling laws 
are obtained with simple arguments. Indeed, suppose that a function scales 
according to g(2 / )=  pg(l); then, letting G(x)=log g(eX), one can prove 
that g(l)=lDf(logl),  where f ( x )  is periodic with period log2 and 
D = log p/log 2. Following the argument quoted in ref. 23 for a Cantor with 
equal scales, we find, using I~(L[A ] ) =  sl~(A), 

#(B(x, 2/3) = 1 # (L[B(x,  203 ) = 1 #(B(L(x), I)) 
s s 

(2.13) 

As a consequence, if x is a fixed point of order n, namely x = L~ from 
(2.13) iterated n times we obtain #(B(x, 2n/)) = (I/s") p(B(x, l)) and there- 
fore #(B(x, l)) l -D, where D = - l o g  s/log ,~, is a periodic function of log l 
with period n log )~. 

3. FUNCTIONAL EQUATION, POLES, AND RESIDUES 
OF THE POTENTIAL 

Using the balance properties (2.4) and (2.5) of the measure n times, we 
obtain the following equation for the potential: 

V ( L j ~  1~ " " L j l  l ( X ) ;  0~) 

= ~ P k l " " P k ~ f ~ I L j 7 1 " ' ' L j l l ( x ) - L L  1 L L I ( y ) I - = d ~ ( y )  
kt ,..., kn 

=p~, ".pj)LjT~ ...)~j~V(x; ~)+  Ejt...j,(x; ~) (3.1) 
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where Ejl.../,(x;~) is an entire function of ~ (the distance between 
preimages of any point is strictly positive) given by 

Ejl.../~(x; c~) = ~ Pkl "' '  Pk, 
kl , . . . ,  k n  ~ J l  , . - . ,  , in  

• IL/, ~ . . . L f  ( x ) - - L k o  . .L~ l (y ) l  d # ( y )  (3.2) 

Letting X/l,...,/,, be the fixed point of the map Ly,, 1 . . . L / l ( x ) ,  we have 

F::~.../o(x/l,..,/,; ~) 
V(x/,,...,/o; ~) = (3.3) 

] - -  P/I"" "PJ,,(J'J,""/~j.)-= 

As a consequence, the singularities of V(x/1,...,/,; ~) are poles located at 

~7~nl=l log p/: 2nm 

- Z nz=l log 2/, + i Z n+=l log 2j: (3.4) 

Denoting by nl ...... n~., where n~ + . . .  + ns = n, the number of times 2i,..., 2s 
appear in the sum (3.4) and by w = (wl ..... w~) the corresponding fractions, 
we see that the real part ~(w) of (3.4) is given by 

~(w) = 5Z::1 w/log p/ (3.5) 
E/= l  w/log 2/ 

In the limit n-+ +v the measure of the set g(w), with g(w) given by the 
union of the intervals I/1,..., :s where the frequency of the indices 1,..., s is w, 
is zero except for w = p ,  and ~(p) is the information dimension or 
Hausdorff dimension of the measure. Moreover, the Hausdorff dimension 
of any other set g(w) where a(w) has a constant value (the measure of 
these sets is zero) is given by 

fl = Z / = ,  w/log w/ (3.6) 
Z~= 1 w/log 2g 

and it is not difficult to show that f i = f ( o O = q o ~ - ' c ( q ) ,  where f(~) is 
defined according to ref. 24; the result explicitly quoted in ref. 24 for s = 2 
agrees with our results. 

The present analysis show that l~(B(x, l)) l ~', where ~ here denotes the 
real part of (3.4) for any fixed point x, is a periodic function of log l with 
period given by 2n divided by the imaginary part of (3.4). As a conse- 
quence, we extend the results given by the scaling arguments for equal 
scales to the generic case. Moreover the computation of the residues can be 
explicitly carried out. In the Appendix we compute analytically the residues 
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for the map defined by L ~ ( x ) = x / 2 ,  L2-1(x )=(x+l ) /2 ,  with p t =  
P2 = 1/2, for which # is the Lebesgue measure on [0, 1 ]. In this case :~ = 
1 + i2~m/log 2 and we check that all the residues vanish except for the real 
pole; moreover, the computation shows that the residues do not depend on 
the interval [-0, R]  where the Mellin transform of #(B(x, l)) is performed 
provided that R is strictly positive and less than 1. The independence of the 
residues from the cutoff R is a general result, as shown in the Appendix, 
and proves that they are related only to the local properties of the measure. 

Denoting by c~ = _7 + imr 1 the poles (3.4) of the potential at a fixed 
point of order n, we have that the Mellin inverse transform is given by 

#(B(x, l)) = l ~ +~o~ E(x; ~_ + imq) Y~ x log 2jk exp(imt/log l) (3.7) 
m =  k =  

where we used the short-hand notation x, E, _7 for xj~,...,j,, Ej,,...,j,, ~_j~,..,j. 
The residues of the poles are indeed given by E(x; ~_ + im~l)/Z~= l lOg)v~ 
and to compute them we must approximate E. We consider two basic 
approximations of the integral of a function with respect to the measures 
which are based on 

fe f ( x )  d~(x)= ~ fA f ( x )  d#(x) (3.8) 
k l  , . . . ,  k m k l  ,..., k m 

where we apply either a mean value theorem or we replace g(x) with 
g(m)(x) given by (2.9). In the former case, assuming f to be Lipschitz in 
[0, 1] with Lipschitz constant M in [0, 1] and letting x* be any point in 
Ik~,....k ~, we have 

f 
A k  I k m 

f ( x )  dkt(x) = f ( x * )  Pk~ " " Pk~ + bk~,.,.,k,, 

[bk~,.... k,,I ~< MPkI "" pk,,2k~ ''" 2kin 
(3.9) 

We shall choose x* to be the fixed point Xk~,...,k,, of L~,~ 1 . . .L~I (x )  in the 
interval Ikl,.... ~,o to obtain 

f e f ( x )  d#(x)= ~ Pkt'"Pkmf(x~:~,..,k,,)+6,,, 
k l  , . . . ,  k m  

[CSmL ~<M(p121+ --- +ps)~.) '~ 
(3.10) 

We shall refer to (3.10) as the ergodic quadrature formula, since we replace 
the integral on the measure with a weighted sum on the orbit. The 
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convergence rate is geometric and better than ).m The second method max �9 
consists in replacing # with #( ') ,  where 

d p ( m ) ( x )  = (Pk~" "'Pkm)/(2k~" "')ok,,) dx, xSA~l,...,k, ' (3.11) 

and extending d#(m)(x) defined by the rhs to Ik~,..., k~. As a consequence, we 
have 

f Pkt'''Pk~ ~ f(x) dx+ 6~,...,k~ (3.12) 
f(x) dg(x)= J~kl : :  . ~ k  m ",kl km ~ A  k 1 ,.,., k m ,,.., 

In this case we have no explicit bound for the error 6;~,..., kin" 
This method is useful to evaluate the remainder of the functional 

equation for the potential, since f(x) = (2x + c) ~, where 2 and c are such 
that 2x + c never vanishes on [0, 1 ]. As a consequence, 

f,~ 1 E Pk,'''Pkm 
�9 (;~x + c) ~ d # ( x )  = 1 -~--s k~,..., km &l  ;~., 

x [ (2bkl,..., k,, + c) 1 - ~ -- (2ak~,..., k,~ + c) 1 - ~] + 6"  

(3.13) 

where Ik~,...,k~ = -- [ak~,...,k~,bk~,...,km] and the convergence as m ~  oc is 
ensured. 

Other approximation methods could be used if the probabilistic 
algorithm (25) to generate the Cantor is used, as proved in ref. 26. 

For  the energy integral the procedure is similar. Using twice the 
balance property of the measure, we have 

where 

~b(c0= ~ PkPj fs fs lL~ l x -  L f  ~y} ~ d#(x) d#(y) 
j , k = l  

= p k 2 k  ~ ( ~ )  + E(~)  
k = l  

(3.14) 

j C k  

We notice that for k r j the distance of L~-ix from L f  ly is always finite 
and therefore E(c 0 is an entire function of ~. The singularities of ~(~) are 
poles given by the equation 

i P~2 ;  ~= 1 (3.16) 
k = l  
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The F r o s t m a n  theorem (27~ asserts  tha t  the divergence abscissa,  given by the 
pole with lowest  real  par t ,  is a lower  b o u n d  to the Hausdor f f  d imens ion  
which is reached for the equi l ib r ium measure.  If  the cor re la t ion  integral  
scales as C(l)~l ~ then the divergence abscissa is the cor re la t ion  

d imens ion  D2(/~). 
The  residues in this case are ob ta ined  by app ly ing  twice the above  

a p p r o x i m a t i o n  schemes (3.8)-(3,13) to the doub le  integral  in the rhs of 
(3.15), and  the convergence and the er ror  bounds  are s imilar ly obta ined.  

4. F O U R I E R  S P E C T R A  A N D  D E C A Y  L A W  

N u m e r i c a l  Resu l ts .  The results on the s ingular i ty  spec t rum have 
been c o m p a r e d  with the Fou r i e r  spect ra  ob ta ined  from the numer ica l  

Table I. The Fourier Spectrum of the Function S(y) 
Computed Numerically from the FFT and from the 

Residues of the Potential Function Computed 
through the Ergodic Method and through the Lebesgue 

Approximation p{n) to the Measure Are Compared 
for the Ternary Cantor 

m a,~ b,, 

Amplitudes FFT with 1024 points 
0 0.99776 0.00000 
1 0.10446 -0,04273 
2 -0.10637 -0.04814 
3 0.01395 -0.05512 
4 -0.00848 -0.00865 
5 -0.00337 -0.01990 

Amplitudes ergodic theorem 
0 0.99893 0.00000 
1 0.10425 -0.04371 
2 -0.10755 -0.04534 
3 0.01178 -0.05572 
4 -0.00897 -0.00834 
5 -0.00456 --0.01981 

Amplitudes approximated measure 
0 0.99892 0.00000 
1 0.10424 --0.04371 
2 --0.10756 --0.04535 
3 0.01177 --0.05574 
4 -- 0.00897 - 0.00835 
5 --0.00456 --0.01983 
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computation of the measure of a ball for a generic Cantor system and of 
the correlation integral for a self-similar Cantor. 

Indeed, the correction to the scaling law of the correlation integral is 
periodic when the scales are equal, since the poles are equally spaced on a 
line parallel to the imaginary axis. If the scales are different but satisfy a 
resonance condition, namely the vector v = (log 21,..., log 2,) is rationally 
dependent, then there are still poles equally spaced on a line parallel to the 
imaginary axis, but the correlation is periodic only asymptotically, since 
there can be further poles to the right of this line. In the generic case the 
poles can be spread in the half plane to the right of the convergence 
abscissa and C(1) exhibits damped oscillations. 

In the latter cases the only possible comparison is between the 
numerical correlation and the inverse transform of the energy integral 
approximated with the leading singularities. 

We consider the Cantor with equal scales and weights: 21 = 22 = 1/3, 
Pl = P2 = 1/2, and the Cantor with two different scales 21 = 1/3, 22 = 1/5 
and equal weights. We first discuss the results obtained for the measure of 
a ball, since in this case the correction to the scaling law is always a peri- 
odic function. Letting s be a fixed point of the map, we have computed the 
function S(log l) = #(B(s l)) l ~, where cr is the scaling exponent given by 
(3.5). The function S(y) evaluated numerically turns out to be periodic and 
its Fourier spectrum was obtained using a FFT  algorithm. The first five 
coefficients are quoted in Table I and compared with the coefficients 
obtained from the residues of the poles e = a + inq of the potential function. 
These residues were computed using either the ergodic theorem or the 

10000 

10 
10 3 

8 

104  10 5 10 6 

�9 Err Ez 

Fig. 1. Plot of the logarithm of error on the residues of the potential function at the real pole 
for the ternary Cantor  against log 2 n, where n is the order of the partition used in the 
approximation. 
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approximation of the measure #(x) with a Lebesgue measure #(")(x) and 
are also quoted in Table I. It can be observed that the Fourier coefficients 
obtained from the residues with two different approximation methods agree 
within five decimal places, while the agreement with the numerical Fourier 
spectrum is within three to four decimal places. 

This is consistent with the error estimates: indeed, the error in the 
FFT with M = 2  m is ocM -I  and in our case M =  1024 was used. The error 
estimate with the ergodic approximation was 2 n if the order-n partitions 
were used. In Fig. l a plot of the logarithm of the error against log 2" is 
shown and the data sitting on a straight line confirm the estimate. 

In Fig. 2 we show the function S ( y )  computed with 30 Fourier 
components: the function obtained from the original data and from the 
Fourier spectrum computed from the residues are indistinguishable. 

The decay law of the spectrum was also analyzed. In Fig. 3a we show 
the coefficients between 3 0 < m <  512 computed from the FFT: the decay 
obtained from the first 512 coefficients is fitted with a power law k 1.25 and 
the exponent varied by less than 7 % when the spectrum obtained from the 
residues is considered; see Fig. 3b. The fit obtained by cutting the first coef- 
ficients up to the 30th gives an exponent whose variation is within 0.05. 

For  the second example of a Cantor with two different scales the situa- 
tion is very similar as far as the spectrum obtained from the F F T  and the 
residues is concerned. In Table II the first components are quoted and it 
can be noticed that the agreement is slightly worse than in the self-similar 
case; the decay law of the spectrum is similar. The case of the Julia set is 
not consider here, for the following reason: we know that we can 

Fig. 2. Plot of the function S(y) computed  numerically for the Cantor  with scales )-1 = 1/3, 
2~ = 1/5. The plot obtained from the first 30 Four ier  components  of its Fourier  spectrum is 
indistingnible. Axes: - 2 5  ~< x = abscissa ~ 0; 0.5 ~< y = ordinate ~ 1.2. 
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approximate the measure of the Julia set with the measure of a linear 
Cantor L (") whose first partition agrees with the order-n partition of 
the Julia. However, since the measure is a very local property, the only 
meaningful comparison concerns averages of the measure on finite inter- 
vals. The comparison of the scaling exponent and the correction of the 
scaling laws at any finite order will be significantly different. The problem 
does not exist for the correlation integral, which is an average over the 
measures of the balls. In this case the sequence of linear Cantor sets 
provides a good approximation to the correlation integral of the Julia set, 
as shown in ref. 21. 

The correlation integral has been analyzed following the same scheme. 
Let S(y) be the correction to the scaling law, namely S(log l )=  C(1)l 02. 

3a 30<m<512 3b 30<m<512 

3c 10<m<100 3d 10<m<100 

! 

Fig. 3. (a) Plot of the Fourier spectrum of S(y) computed from the FFT for the ternary 
Cantor set. Axes: 30~<x<~512; 0~< y~<0.005. (b)Plot of the Fourier spectrum of S(y) 
computed from the residues calculated with the method of the approximation of the measure 
for the ternary Cantor set. Axes: 30 ~< x ~< 512; 0 <~ y ~< 0.005. (c) Plot of the Fourier spectrum 
of S(y) computed from the FFT for the ternary Cantor set. Axes: 10 ~< x ~< 100; 0 ~< y ~< 0.0025. 
(d) Plot of the Fourier spectrum of g(y) computed from the residues calculated with the 
ergodic quadrature formula for the ternary Cantor set. Axes: 10 ~ x ~< 100; 0 ~< y ~< 0.0025. 
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In the case of the self-similar Cantor the first Fourier coefficients computed 
from the FFT and from the residues are compared in Table III. Here the 
accuracy is slightly lower, within three decimal digits, due to the double 
integration required to compute the residues. However, the function S(y) 
obtained with 30 Fourier components turns out to be indistinguishable if 
the FFT or the residues results are used. In Figs. 3c and 3d the spectrum 
decay computed from FFT and the residues is shown, and a fit with a 
power law gives k - 1 4  with a difference in the exponent by less than 5%, 
depending on the data used. 

Finally, the unequal-scales case has been examined. Here the only 
possible comparison is between the numerical S(y) and the inverse Mellin 
transform of the energy integral approximated with the leading 
singularities. 

In order to find such singularities, we have considered Cantor sets 
with two scales different, but close enough to allow the use of a pertur- 
bative method. 

Table II. The Same as Table I for a Cantor wi th  
Scales kl =1 /3  and ~2=1 /5  and Equal Weights 

m a m b m 

Amplitudes FFT with 1024 points 
0 0.80563 0.00000 
1 0.11715 0.01738 
2 0.05791 -0.12699 
3 0.06102 0.01178 
4 0.00862 -0.02105 
5 -0.01293 -0.03485 

Amplitudes ergodic theorem 
0 0.81324 0.00000 
1 0.11852 0.01462 
2 0.04953 -0.13143 
3 0.06281 0.00578 
4 0.00611 -0.2190 
5 -0.03492 -0.02966 

Amplitudes approximated measure 
0 0,81318 0.00000 
1 0.11855 0.01454 
2 0.04963 --0.13142 
3 0.06275 0.00583 
4 0,00607 -0.02190 
5 -0.03489 -0,02967 

822/66 /1-2-34  
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Table III. The Fourier Spectrum of the Function S(y) 
Computed Numerically from the FFT and from the 

Residues of the Correlation Function Computed 
through the Ergodic Method Are Compared for the 

Ternary Cantor 

m am bm 

Amplitudes FFT with 1024 points 
0 0.96779 0.00000 
1 0.03179 -0.04059 
2 -0.01530 -0.00286 
3 0.01462 0.00159 
4 --0.00013 -0.00357 
5 -0.00463 -0.00005 

Amplitudes ergodic theorem 
0 0.96543 0.00000 
1 0.03547 -0.03746 
2 - 0.01442 - 0.00586 
3 0.01354 0.00558 
4 0.00129 -0.00339 
5 - 0.00404 - 0.00223 

Fig. 4. Plot of the function C ( l ) / l  ~ computed numerically and as the inverse Mellin trans- 
form of the energy integral approximated with the real pole c~ = D z and the nearest two com- 
plex poles for the Cantor with the two scales 21=0.3 and 22=0.383. Axes: --16~<x~<0; 
0.96 ~< y ~< 1.06. 
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Denoting by 2~ "~</~2 the two scales and considering Pl =P2  = 1/2, 
Eq. (3.16), which gives the singularities, takes the form 

J ~  -k- ,~2~ = 4 (4.1) 

We considered e =  (22-21)/21,  so that 22 = ( 1 + e ) 2 1 ,  and we expanded 
the poles in a series of e, ~ = ~2j~o eJo~i, where c% is the pole in the case 
21 =22.  

Equation (4.1) can be written as 

1 + (1 + ~)-~ =42]: (4.2) 

The coefficients ~j were determined up to an order j = 4  by solving 
Eq. (4.2). In computing the residues with the ergodic quadrature formula, 
we have used the first two couples of complex conjugate poles in (3.15). 
The oscillations so obtained, superimposed with the ones provided by the 
numerical computat ion of the correlation integral of the set, are shown in 
Fig. 4. 

In Fig. 5 we show the first three couples of poles in the complex plane 
for different values of 22 with 21 = 1/3. The poles on the line parallel to the 
imaginary axis are the ones obtained for 22=21;  the other poles are 
obtained for 22 = 0.383. 

The Julia set for the quadratic map F ( z ) =  z 2 - p  has also been con- 
sidered for large values of p, such as p = 10. In this case the system is well 
approximated by a linear Cantor  set with four maps and two different 
scales having the first-order partition identical with F~ the correlation 

i 0 

0 0 

i ' ' 
Fig. 5. Complex poles of the energy integral for a Cantor with scales 2~ = 0.3 and s varying. 
The poles on the line parallel to the imaginary axis are the ones obtained for 22 = 2~; the 
other poles are obtained for 22 = 0.383. Axes: 0.5 ~< x ~< 2.25; - 25 ~< y ~< +25. 
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of the Cantor is almost identical to the one of the Julia set and is well 
reproduced by the first leading singularities of the energy integral. 
Approaching p = 2 ,  the number of maps of the approximating linear 
Cantor sets increases and correspondingly so does the computational 
complexity. 

5. C O N C L U S I O N S  

The Mellin transforms of the measure of a ball and of the correlation 
integrals allow us to determine the singularity spectra, and the possibility 
of determining the residues of these functions, which are meromorphic for 
the linear Cantor sets, makes this analysis accurate and rigorous. For the 
case of non-self-similar measures this is the only tool to analyze the 
singularity spectrum, since the Fourier analysis does not apply. The exten- 
sions to higher-dimensional linear Cantor sets are straightforward and also 
the application to the Julia sets is possible, so that we can say that the 
proposed method is applicable to the disconnected repellers. 

A P P E N D I X  

In computing the Mellin transform, the upper limit of integration 
remains arbitrary. We can choose it equal to R ~ 1 if the support of the 
measure is [0, 1 ]. However, the residues turn out to be independent of R; 
indeed, consider, for instance, the potential defined by 

f: VR(Xi; c~) = l -~  d # ( B ( x i ,  l)) (A1) 

If the measure of the ball is given by 

# ( B ( x i ,  l)) = ~, Cm Um (A2) 

and assuming that the convergence is uniform, we have 

V R ( X i ; O ~ ) =  E CmO~m R ~ m - ~  (A3) 
m O~ m - -  O~ 

The residues r m are independent of R and are given by r m = --CmO~ m. As a 
consequence, we can always take R = 1, so that we can write 

V(xi ;  cQ= V e - l ( x i ;  e ) = ~  mct --rmctm (A4) 
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and obtain B(xi,  l) as the Mellin transform of V ( X i "  ~ 0~), which is determined 
simply by the knowledge of the poles and residues of the potential. Using 
well-known properties of the measure and #(B(x,  l)) = p(x  + l) - # (x  - l), 
we have 

R ~ x +  R --  c~ 

VR(x;~)=fo  l ~ d # ( B ( x , l ) ) =  xl R I x - y 1  d~(y)  (A5) 

by using the balance properties of the measure and chosing xi to be the 
fixed point of L~-l(x), it is not difficult to show that if R is small enough 
so that [ x i - R ,  x i + R ]  n Lk-i([0, 1 ] ) = ~  for k r  

where 

VR(xi; c~)= f~ ZEx,--R,x,+R](Y) ly--XeJ--~ dp(y)  

1 

fo -' = Z[~,_R,~,+R~(L i ( y ) ) [ L ? ~ ( y ) - - L V I ( x i ) I - ~  dl~(y) 

f xi + R/',~.i 
_ -~ l y _ x i l - ~ + E R ( x i ; c ~ )  
- -  P i '~ i  x i -  R/J-i 

= pi2[~VR(xi;  ~) + ER(xi; ~) (A6) 

~ xi+ R/2i 

ER(x i ;  ~) = p iX ~ l Y -  xil - ~ d ~ ( y )  
~  

f 
xi-- R 

+ pi2 -~ ] y - x i t  ~dp(y)  (a7) 
x i -  R/2~ 

The changes in ER when Ix i -  R, x i + R] c~ L; I ( [0 ,  1 ] ) r  ~ are obvious. 
Also, the extension to the fixed points of any order is straightforward. In 
this case, denoting the poles 

log Pi 27rm 
O~= a m  ~ l o g  )~ i }- i ~og )L i (A8) 

we have the residues given by 

ER(x~; ~,.) 
rm - (A9) 

Pi log 2i 

We consider now an explicit example which corresponds to the Lebesgue 
measure in which the computation can be explicitly carried out. Assuming 
2i = Pi = 1/s for 1 ~< i ~< s, we have dp(x) = d(x), 

R 1 
- -  (A10) VR(x; a) = 2 1 - 
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The computation of ER(xi; ~) gives 

ER(xi; ~)=  2R ~ -~ i - - ~  (Al l )  

and due to the uniformity of the measure, the result is independent of xi. 
Moreover, one checks the identity ( 1 - s  ~- 1) VR(x; ~)= ER(x; c~). Here we 
would have a sequence of poles at c~,~ = 1 + i2~m/log s, but it is immediate 
to check that ro = - 2 ,  while all the remaining residues vanish identically, 
as it should be. 

The situation for the correlation energy and the correlation integral is 
completely analogous. We have the independence of the residues from R 
and consequently once we know poles and residues, we reconstruct C(1), 
taking the Mellin transform with l ranging in [0, 1 ]. 

A C K N O W L E D G M E N T S  

The work of G.T. was partially supported by NATO grant 9.15.02 RG 
N ~ 383/89. 

REFERENCES 

1. E. N. Lorenz, Deterministic nonperiodic flow, J. Atmos. Sci. 20:130-141 (1963). 
2. M. H6non, A two dimensional mapping with a strange attractor, Commun. Math. Phys. 

50:69-77 (1976). 
3. M. Widom, D. Bensimon, L. P. Kadanoff, and S. J. Shenker, Strange objects in the 

complex plane, J. Stat. Phys. 32:443 (1983). 
4. D. Ruelle, Measures describing a turbulent flow, N. Y. Acad. Sci. 357:1 9 (1980). 
5. D. Ruelle, Chaotic Evolution and Strange Attractors (Cambridge University Press, 

Cambridge, 1989). 
6. D. Ruelle, Repellers for real analytic maps, Ergodic Theory Dynam. Syst. 2:99-107 (1982). 
7. H. Brolin, Invariant sets under iteration of rational functions, Arch. Math. 6:103-144 

(1965). 
8. D. Ruelle, Thermodynamical formalism, Encyclopedia of Mathematics and its Applications, 

Vol. 5 (Addison-Wesley, Reading, Massachusetts, 1978). 
9. P. Collet, J. L. Lebowitz, and A. Porzio, The dimension spectrum of some dynamical 

systems, J. Stat. Phys. 47:60%644 (1987). 
10. E. Vul, Y. Sinai, and K. Khanin, Feigenbaum universality and the thermodynamic 

formalism, Russ. Math. Surv. 39(3):1-40 (1984). 
11. S. Vaienti, Generalized spectra for the dimensions of strange sets, J. Phys. A 21:2313-2320 

(].988). 
12. G. Servizi, G. Turchetti, and S. Vaienti, Generalized dynamical variables and measures for 

the Julia sets, Nuovo Cimento B 101:285 (1988). 
13. G. Turehetti and S. Vaienti, Analytical estimates of fractal and dynamical properties of 

one dimensional expanding maps, Phys. Lett. A 128:343-348 (1988). 
14. S, Vaienti, Some properties of mixing repellers, J. Phys. A 21:2023 2043 (1988). 



Mellin Transforms and Correlation Integrals 533 

15. R. Badii and A. Politi, Intrinsic oscillations in measuring the fractal dimension, Phys. Lett. 
A 104:303-305 (1984). 

16. L. A. Smith, J. D. Fournier, and L. A. Spiegel, Lacunarity and intermittency in fluid 
turbulence, Phys. Lett. A 114:465-468 (1986). 

17. D. Bessis, G. Servizi, G. Turchetti, and S. Vaienti, Mellin transforms and correlation 
dimensions, Phys. Lett. A 119:345-347 (1987). 

18. D. Bessis, J. D. Fournier, G. Servizi, G. Turchetti, and S. Vaienti, Mellin transforms of 
correlation integrals and generalized dimensions of strange sets, Phys. Rev. A 36:920-928 
(1987). 

19. D. Bessis, J. S. Jeronimo, and P. Moussa, Mellin transform associated with Julia sets and 
physical applications, J. Stat. Phys. 34:75-110 (1984). 

20. J. D. Fournier, G. Turchetti, and S. Vaienti, Singularity spectrum of the generalized 
energy integrals, Phys. Lett. A 140:331 (1989). 

21. E. Orlandini, G. Servizi, M. C. Tesi, and G. Turchetti, Singularities of the energy integrals 
and scaling laws of the dimension spectra, Nuovo Cimento, to appear. 

22. L. S. Young, Dimension, entropy and Lyapunov exponents, Ergodic Theory Dynam. Syst. 
2:109-124 (1982). 

23. T. Bedford and A, Fisher, Analogues of the Lebesgue density theorem for fractal sets of 
real and integers, University of Delft, preprint (1990). 

24. T. C. Hasley, M. H. Jensen, L, P. Kadanoff, I. Procaccia, and B. Shraiman, Fractal 
measures and their singularities: The characterization of strange sets, Phys. Rev. A 
33:1141-1151 (1986). 

25. M. F. Barnsley and S. Demko, Iterated function systems and the global construction of 
fractals, Proe. R. Soe. Lond. A 399:243-275 (1985). 

26. J. H. Elton, Ergodic theorem for iterated maps, Ergodic Theory Dynam. Syst. 7:481-488 
(1987). 

27. K. J. Falconer, The Geometry of Fraetal Sets (Cambridge University Press, Cambridge, 
1985). 


